
Biografía
Existen pocos datos acerca de la vida de Euclides. Se desconoce el lugar de su nacimiento y tampoco se conoce con exactitud dónde residió aunque se
piensa que fue
en Alejandría, Egipto, durante el reinado de Ptolomeo I.
No existe mucha más información sobre él, y es por ello que los historiadores plantean
tres hipótesis:
-
Euclides fue un matemático histórico que escribió Los Elementos entre otras obras.
-
Euclides fue el líder de un equipo de matemáticos que escribió las obras completas de Euclides firmando con su nombre incluso después de su muerte.
-
Los trabajos que se le atribuyeron fueron escritos por un equipo de matemáticos de Alejandría que firmaron con el nombre de Euclides en honor a Euclides de Mégara.
La mayor parte de los historiadores coinciden en que la hipótesis más probable es la primera y es por ello que será esta la que tratemos en más profundidad.
Se
piensa que Euclides pudo haber estudiado en la Academia
de Platón. Posteriormente abriría una escuela que acabaría siendo la más importante del mundo
helénico.
Este icónico geómetra recopiló todas las matemáticas clásicas en su obra y su modelo expositivo inspiró a autores como Galeno en medicina o Spinoza en ética.
Es uno de los libros científicos más conocidos del mundo. Se trata de una recopilación del conocimiento de la Geometría que había por aquel entonces partiendo únicamente de cinco postulados. Probablemente ninguno de los resultados de Los Elementos haya sido demostrado por primera vez por Euclides pero la recopilación se la debemos a él.
De
los trece libros que lo
componen, los seis primeros corresponden a lo que se entiende por
geometría plana y en ellos se recogen las técnicas geométricas
utilizadas en la escuela de Pitágoras.
Los
libros del séptimo al décimo tratan cuestiones numéricas, y los
tres últimos sobre la geometría de los sólidos.
La
geometría de Euclides ha sido útil en muchos campos del
conocimiento. De los cinco axiomas, el quinto ha sido el más problemático. Se intentó deducir del resto de axiomas hasta el
silgo XIX, pero siempre con resultados fallidos y, posteriormente, se demostró que era imposible. Sin embargo, estos
fracasos dieron pie a que
algunos
matemáticos, como Gauss
o Lobachevski,
evidenciaran que era posible definir geometrías consistentes en las
que no se cumpliese el quinto postulado. Entre
estas destaca la de Riemann,
juzgada por Albert Einstein
como la que mejor representa el modelo de espacio tiempo relativista.
Los cinco postulados son:
-
Dados dos puntos se puede trazar una recta que los une.
-
Cualquier segmento puede ser prolongado de forma continua en una recta ilimitada en la misma dirección.
-
Se puede trazar una circunferencia de centro en cualquier punto y radio cualquiera.
-
Todos los ángulos rectos son iguales.
-
Si una recta, al cortar a otras dos, forma los ángulos interiores de un mismo lado menores que dos rectos, esas dos rectas prolongadas indefinidamente se cortan en el que están los ángulos menores que dos recto.Este último postulado también se puede enunciar de la siguiente manera: Por un punto exterior a una recta se puede trazar una única paralela.
No hay comentarios:
Publicar un comentario